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A method of constructing plane potential flows past doubly periodic arrays of 
cylindrical obstacles is described. It is based on Rankine’s well-known technique of 
determining by simple superposition the shape of an oval-shaped obstacle simul- 
taneously with the flow round the obstacle. This paper deals with the use of such 
potentials in calculating effective medium conductivities for a class of doubly periodic 
two-phase materials which contain either non-conducting or perfectly conducting 
cylindrical inclusions embedded within a conducting matrix phase. 

1. Introduction 
Spatially periodic potential flows are encountered typically in inhomogeneous 

materials with periodic microstructure, when these conduct heat or electricity or, as 
in the case of certain porous materials, allow for matter transport by molecular 
diffusion through an interstitial fluid phase. Common to formally analogous transport 
phenomena of this kind is the problem of deriving an effective or bulk conductivity 
which enters as the factor of proportionality into the linear relation between the 
mean-field strength and the mean-flux density. The same type of problem arises with 
the determination of a number of distinct transport properties which characterize the 
linear theories of a variety of transport phenomena in two-phase materials. A unifying 
approach was discussed by Batchelor (1974) for the case of statistically homogeneous 
two-phase materials with random microstructure, aiming typically at close enough 
approximations or bounds for a particular property in terms of constituent phase 
properties and phase geometries. On the other hand, specific phase geometries and 
spatially periodic two-phase microstructures, in particular, will permit the exact 
determination of a transport property. These different categories of approach have 
recently been reviewed by McPhedran, McKenzie & Phaen-Thien (1983). 

In the following, a method is described which yields exact effective conductivities 
for a class of two-phase materials with doubly periodic microstructure, corresponding 
to an arrangement on a lattice of identically shaped cylindrical inclusions of either 
infinite or zero conductivity, embedded in a conducting matrix phase. The method 
of construction by which this class may be characterized is identical with Rankine’s 
well-known technique of determining the potential flow round oval-shaped bodies by 
superposition of the potential of a uniform flow and that of a suitable distribution 
of singularities. It appears that this technique, which has its origin in fluid dynamics, 
has not been used so far for the construction of potential flows round doubly periodic 
arrays of obstacles and that indeed the connection between such solutions and the 
effective-conductivity problem has never been explored. 
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‘Rankine media’, as one may label for convenience the class of two-phase materials 
constructed by a Rankine technique, are characterized by inclusion shapes which 
depend on volume fraction. This effect, which is due to interference among neigh- 
bouring inclusions, will be negligible at small volume fractions, but with increasing 
volume fractions manifests itself in an adjustment of the shape of an inclusion to that 
of the lattice cell. This feature clearly sets apart the two-phase media studied here 
from others which are characterized by fixed inclusion shapes and, beginning with 
Lord Rayleigh’s (1  892) pioneering work, have been much investigated. 

The inclusion shapes found for Rankine media in the case of a rectangular lattice 
will, in general, display only a mirror symmetry with respect to the symmetry axes 
of a lattice cell and thus yield different effective conductivities in the x- and y-directions. 
The determination of the conductivity in the x-direction is carried out simultaneously 
with the construction of the inclusions in the present approach and accordingly will 
be dealt with f is t .  A separate and general argument is introduced subsequently, 
which allows determination of the effective conductivity in the (transverse) 
y-direction from the value of the conductivity in the x-direction as well as from 
properties of the potential distribution associated with the latter. An extension of the 
underlying principle, with the goal of constructing three-dimensional Rankine media, 
seems well worth investigating, particularly perhaps in the context of applications 
of diffusion theory to  biological porous materials with cellular microstructure 
(Nicholson & Phillips 1981). 

2. Statement of the problem 
Figure 1 shows a cross-section through a two-phase medium of the type to  be 

discussed. The section is taken perpendicular to the axes of identical parallel 
cylinders, the outline C of which is symmetric in the x- and y- (lattice) axes. Only 
rectangular lattices, with lattice spacings 2a and 2b in the x- and y-directions, will 
be considered. 

I n  general, let c1 and u2 denote the distinct conductivities of the two phases. The 
relevant potential @(x, y) then is an harmonic function, satisfying 

V2@ = 0, (2.1) 

the derivatives being taken in the direction of a chosen unit vector normal to the 
smooth contour C. 

Consider now the cases when a static field of spatially uniform average strength 
(E,) or (E,) is applied alternately parallel to  the x- or y-direction. These averages 
may be defined for a single lattice cell f2 of surface area 4ab. The segments of the 
boundary a52 furnishing the entry and exit surfaces for the currents associated with 
these mean fields will be equipotential lines. For the lattice cell centred on the origin, 
one can therefore express the mean fields with the aid of Gauss’s theorem as follows : 
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and, if the mean field is parallel to the y-direction, 

Notice that the integrals extending over the matrix-inclusion interface C vanish 
because of condition (2.2). 

The current density (Jz, J,)  in each phase can be expressed in terms of the function 
Y in accordance with the definition 

I n  the terminology of the hydrodynamic analogue, Y ( x ,  y) represents the harmonic 
conjugate ‘ stream function’ associated with the ‘velocity potential’ d ( z ,  y). Along 
the phase boundary therefore 

ay a@ -=r--, 
as an 

where a/as denotes differentiation along C. It follows from (2.3) that 
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When the mean field is oriented in the x- or y-direction, the lattice-cell boundaries 
parallel to this field are local field lines P = constant and the corresponding mean 
current densities are therefore given by 

=-{Y(-b)Sa 1 dx:-Y(b) dx =-A A P  
4ab -a j:a 1 2b 

and 

(2.10) 

where the integrals extending over C vanish again because of condition (2.8). 

and y-directions are now defined by 
With the aid of (2.4), (2.5) and (2.9), (2.10), the effective conductivities in the x- 

and 

(2.11) 

(2.12) 

Since a$ and a: have the dimensions of conductivities, they must be homogeneous 
functions of degree one in (rl and u2. Following Keller (1964), one may thus introduce 
standard conductivities defined by 

(2.13) 

The first argument of these functions may now be assumed to denote consistently 
the conductivity of the matrix phase and the second that of the inclusion phase. Cx 
and Z, may then be viewed as the conductivities of a medium with matrix 
conductivity equal to one and inclusion conductivities differing from one by a factor 

An elegant result, due to Keller (1964) and later generalized by Mendelson (1975) 
relates the conductivity Zx of one medium to the conductivity C, of another medium 
obtained from the first by exchanging the conductivities of the matrix and inclusion 
phases. Keller's theorem states that 

aZ/al. 

(2.14) 

This study will focus on the determination of effective conductivities for media 
containing non-conducting inclusions. For this particular case Keller's theorem takes 
the form (Keller 1963) 

CJ1,O) Z,(L 00) = 1 ,  (2.15) 

and this useful reciprocal relation will permit the translation of all subsequent results 
for non-conducting inclusions into results for perfectly conducting inclusions. 

In studying the effects of cylindrical obstacles Lord Rayleigh, and i t  would seem 
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essentially all later investigators, considered configurations as shown in figure 1, in 
either two or three dimensions, always assuming that the inclusion shape was given 
in advance. In the two-dimensional case, circular or elliptical cross-sections were 
naturally studied first. Even for these ‘simple ’ shapes, considerable analytical efforts 
go into the calculation of effective conductivities and especially into the construction 
of estimates in the form of upper or lower bounds. 

It is well known, on the other hand, and usually discussed for the formally 
analogous case of irrotational flow of an ideal fluid round oval-shaped bodies, that 
such a flow is determined most easily, if the body’s shape is determined, as in a 
free-boundary problem, simultaneously with the flow through a construction intro- 
duced by Rankine. The classical example, found in most textbooks on fluid dynamics, 
is that of a plane flow round an oval ‘Rankine body’, obtained by superimposing 
the complex potentials of a uniform flow and of a sourcesink pair. Thus, the shape 
of the oval is determined by a simple superposition and is allowed to vary with a certain 
parameter of the flow. Superposition of a uniform flow and a dipole at the origin, for 
example, yields the flow round a circular cylinder. The relevant complex potentials 
are - Uz and -M/2xz and yield the combined potential w ( z )  = - M/2xz-  Uz. The 
streamline Im o ( z )  = - Uy{ 1 - (M/2xU) / (x2  + y2)} = 0 runs along the x-axis and 
splits to define the circular contour of the resulting Rankine body. Its radius is equal 
to (M/2xU)f  and is seen to depend on the relative strength of the dipole singularity 
to that of the uniform flow through the ratio of dipole moment M over speed or 
current density U .  

Returning to figure 1 the idea to be explored in the following is now clear. It is 
to construct a two-phase material as an array of Rankine bodies by superposition 
of the complex potentials of a uniform flow and of a suitably selected doubly periodic 
array of isolated or distributed singularities. It follows, of course, that Rankine’s 
method remains restricted to the construction of flows round non-conducting 
obstacles. The quantities of primary interest are thus the conductivities Ex( 1, 0) and 
CJ 1,0), or briefly Zx and C,. 

Since it suffices then to consider a matrix of conductivity u = 1, the defining 
relations (2.11) and (2.12) may for the present purpose be written 

(2.16) 

(2.17) 

where the potential drops are due to a flow through a matrix of conductivity u = 1. 
To cover all cases of u $: 0, one uses (2.13) to get 

u:(u,o) = UC,, U,*(U,O) = UC,. (2.18) 

3. The conductivity of a medium containing cylindrical inclusions shaped 
as Rankine bodies 

3.1 . An example 
Consider again the rectangular lattice with cell dimensions 2a x 2b, as shown in 
figure 1, and assume now that there are logarithmic sources of strength - Q located 
at z = -!jc and all equivalent points and sinks of strength Q at z = +!jc and all 
equivalent points throughout the complex z-plane, where z = x+iy and c is a real 
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constant satisfying 0 < c < 2a. The complex potential wo = Go+iY0 of this doubly 
periodic distribution of singularities is given by 

where 9, (v, r )  is a Jacobian Theta function of the reduced argument v and par- - 
Z ib 

2a’ a ’  

ameter r ,  as defined by 
v = -  r = -  

the dependence on r being suppressed by the customary notation 8,(v). The function 
al(w) is an entire transcendental function with the properties (Abramowitz & Stegun 
1970) 

$,(-v) = -*,(v), (3.4) 

9, (v+ 1 )  = -#,(v), (3.5) 

Q1(v+r) = -q-1 e-Zinv8 1( v 1, (3.6) 

where the nome q is defined by 
(3.7) 

Thus, 9,(v) is odd and periodic in v with the real period 2. These properties imply 
the following important behaviour of the complex potential wo within the basic lattice 
cell, as may readily be shown: 

@O(O,Y) = 0, (3.8) 

P&, 0) = 0, (3.9) 

A,@o = Go(a)-Go(-a) = 0-0 = 0, (3.10) 

QC A U K =  Yo(b)-Yo(-b)=-. 2a (3.11) 

According to (3.11) a net flux of magnitude Qc/2a passes through the cell in the 
negative x-direction. One can cancel this flux by superposition of a constant field of 
strength Qc/4ub oriented in the positive x-direction. Addition of the complex 
potential - (Qz/4ub) z of this field to wo then furnishes a potential 

(3.12) 

with the property AU Yl Y1(b)- Yl( - b) = 0. (3.13) 

Consider now the potential 

w ( z )  = @(x, y) + iY(x, y) = wl(z) - Uz,  (3.14) 

where U 2 0 is some constant current density. For this new potential 

A , @ = @ ( a ) - @ ( - a ) = - ( l + - @ - ) 2 a U ,  4ab U (3.15) 

and Ag Y Y(b)- Y(-b) = -2bU. (3.16) 

The field associated with w is thus seen to drive a current of density U in the positive 
%-direction, while the potential difference across the cell is given by (3.15). According 
to definition (2.16), the lattice cell therefore has the effective conductivity 

(3.17) 
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and, by virtue of (2.4), (3.15) may thus be cast precisely in the form of the appropriate 
macroscopic law : 

U = L'.,.(E,). (3.18) 

The key property of the potential (3.14) is that it permits the field (Ex) and the 
current density U to be varied proportionally, in accordance with (3.18), while C, 
is held fixed by adjusting the independent parameter Q in such a way as to maintain 
a constant ratio Q / U .  The potential w therefore serves to construct an obstructed 
flow of average current density U through a medium with effective conductivity 
C, < 1 .  In the unobstructed case wl = 0 or w = - Uz and C, = 1 accordingly. Thus 
wl(z) plays a role in the construction of the two-phase medium analogous to that of 
the dipole potential - M/2m in Rankine's construction of the flow round a single 
cylindrical obstacle. 

3.2. Inclusion shpes  parametrized by Zz 
In determining the inclusion shape and effective conductivity for a given potential, 
it proves convenient to rescale the lattice by defining 

z 
v = - =  x+iy, 2a 

C d = -  
2a' 

where x and y now have the ranges 

b b 
2a 

- + < x < + ,  -- 2 a < y < -  

for the basic cell. Accordingly, upon substitution for wl 
(3.14) is written 

(3.19) 

(3.20) 

from (3.12), the potential 

(3.21) W+Wtd) adv 2aUq)* 1 w =  @(x,y)+iY(x,y) = -&[-In 
2~ 8,(~-@) b 

The complete doubly periodic array of identical inclusions associated with this 
potential is determined by the streamlines 

5yn, = Imw = -n2bU (3.22) 

but it suffices to focus on the inclusion centred on the origin within the basic lattice 
cell. Its shape is seen to be determined by the condition Imw = 0, or 

(n = 0, + 1 ,  f 2 ,  ...), 

which, with the aid of definitions (3.17) and (3.20), can be brought into the form 

(3.23) 

This transcendental equation for the inclusion contour contains as parameters the 
aspect ratio bla, the distanced between source and sink, and the effective conductivity 
C,. Thus, at fixed values of bla and d ,  the size and shape of the inclusion is uniquely 
determined by the value of C,. 
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Numerical solutions to  (3.23) are readily obtained upon extraction of the imaginary 
part of the rapidly converging Fourier series (Abramowitz & Stegun 1970) 

hSl(v+@) sinn(v+w) O0 1 q2n (3.24) + 4  x -~ sin 2nnv sin nxd, = In 
S,(v-@) sinn(v-w) n 1-q2n 

where q is defined by (3.7). 
The special case of a doubly periodic array of dipoles situated in the cell centres 

may be recovered from the above results by passing to the limit d + O ,  while requiring 

lim (2Qad) = M = constant. 
d+O 

I n  this limit, (3.21) becomes 

w = @(x,y)+iY(x,y) = (3.25) 

I n  the same limit one obtains from (3.23) the following relation for the inclusion shape 
and associated conductivity : 

(3.26) 

The logarithmic derivative of the Theta function has the Fourier series representation 
(Abramowitz & Stegun 1970) 

(3.27) 

A solution to (3.26)-(3.27) for a square lattice with b/a = 1 ,  and for the value 
Cx = 0.43 is shown in figure 2. Also shown are a number of equipotential lines, 
@(x, y)/2aU = constant, and streamlines, Y(x, y ) / 2 a U  = constant. The equipotential 
lines could clearly serve as field lines or streamlines in a transverse flow with perfectly 
conducting inclusions. Thus, the picture shown in figure 2 provides a visual 
demonstration of the content of Keller's theorem (2.15). As may be seen, (3.26) yields 
indeed an oval-shaped 'Rankine body '. 

Figure 3 shows a sequence of inclusion shapes for different values of Zx and inclusion 
volume fractions f, the latter being readily obtained from (3.26) by numerical 
quadrature. Characteristically, the inclusions remain circular until occupying about 
20 % of the surface area of the cell; beyond this value there is noticeable flattening. 
Moreover, there exists a value of C, a t  which the inclusions of neighbouring cells touch 
at the intersections of their horizontal axes with the cell boundaries, i.e. in the points 
(-$, 0) and (!j, 0) and all equivalent points. This value of Zx therefore determines a 
threshold a t  which the conductivity C, in the transverse direction vanishes. It also 
marks the lower limit of validity of (3.23) and (3.26). Still lower values of Zz would 
be determined from slightly modified relations but the corresponding inclusions form 
continuous barriers in the x-direction and are of little immediate interest. Attention 
will therefore be given only to inclusion shapes corresponding to values of C, larger 
than or equal to the threshold value. 

The points of intersection of the inclusion contour C with the x-axis, i.e. the 
stagnation points (x,, O ) ,  enter into an expression for the conductivity 

q2n cos Znxx, sin nxd , - 4  z - 
n-l 1 - q2n 

(3.28) 1 sin $nd cos ind a, 

sin2 nx, - sin2 ind 
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FIQURE 2. Plane potential flow round an inclusion in a lattice cell, constructed by superposition 
of a doubly periodic dipole flow (d = 0) and a parallel flow in the x-direction. Conductivities 
.Zz = 0.43, Zu = 0.34 and inclusion volume fraction f = 0.43. 

0.4 I 

t 
FIGURE 3. Inclusion shapes and conductivities Z;, for d = 0 and cell aspect ratio bla = 1 

which may be derived from (3.23) upon taking the limit y+O. From this follows the 
threshold value of C, for x, = ki: 

q2n sinnnd . (3.29) 1 00 

C,(threshold) = tanind-4 X (-l)n- 
n-1 1 -q2n 
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FIGURE 4. Effect of cell aspect ratio on inclusion shapes and conductivities Zz for d = 0.75. 
(a) b/a = 1;  (b) b/a = 2 ;  (c) b/a = 0.125, Zz = 0.35. 

The corresponding results for the dipole array are 

and 

m 2a 

m 

CJthreshold) = 1 
nb 

(3.30) 

(3.31) 

Figure 4 provides an  illustration of the type of oval-shaped inclusion generated by 
the potential (3.21) of a source-sink pair with separation d = 0.75. It also illustrates 
the effect of the aspect ratio b/a of the lattice on inclusion shape and conductivity. 
On comparing figure 4 (a)  with figure 4 (b), only small differences in shape are detected 
at the maximum inclusion size. Notice that comparable inclusions are constructed 
with equal width in the x-direction. The difference between the configurations shown 
in figures 4 (a) and 4 (b) therefore essentially amounts to an increase in lattice spacing 
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or anisotropic dilution, the effect of which is clearly reflected in the conductivities 
for comparable inclusion shapes. 

A shortening of the lattice spacing in the y-direction, on the other hand, changes 
inclusion shapes significantly a t  aspect ratios b /a  < 1, as may be seen from figure 4 (c) 
which depicts the slender inclusion shape obtained for the particular value C, = 0.34 
at f = 0.55. 

3.3. Determination of C, 
According to the definition already given 

b A, Y C =--- 
a d , @ ’  

(2.17) 

where Au @ = @(b)  - @( - b) and A,Y = Y(a) - Y( - a )  are the changes in the potential 
and its harmonic conjugate across the lattice cell and the y- and x-direction, 
respectively, which occur for a uniform field, <E,>, oriented in the y-direction. 

The idea is now to determine the ratio Az Y/A, @ by mapping the region of flow 
conformally onto a rectangle in such a way that the mapped field becomes a constant 
field. Given that the field is parallel to two sides of this as yet undetermined 
rectangular region of aspect ratio K I K ,  say, one has 

A, Y / A ,  @ = - K / K ,  (3.32) 

from (2.17) and by virtue of the fact that  Z, = 1 for an unobstructed flow. Therefore 

b K  C =--  
a K “  

(3.33) 

Relation (3.32) is, of course, based on the fact that the boundary values of @ and 
Y remain unchanged under conformal mappings. 

The required mapping will be a composite mapping, beginning with the potential 
w(x) .  Thus, consider the function 

which maps the cell (0 < x < 2a, -b  < y < b} contained in figure 1 onto the 
rectangle { - 1/2Z, < Re 6 < 1/2C,, -b/2a < l m  g < b/2a} shown in figure 5 (a). 
The images of the field lines of the actual flow in the y-direction now pass through 
a central constriction of width 2r created by plane barriers, each of which represents 
the image of one half of an inclusion. The length of these barriers is known from the 
fact that the point 5 = T is the image of the stagnation point (x,,O) which lies at 
the intersection of the central inclusion contour C with the positive x-axis (cf. 
figure 2). Accordingly, 

(3.35) 

where @, = @(x,,O) is the potential in the stagnation point. From (3.21) and (3.24) 

b sinx(x,+$i) O0 1 qZn 3- - --[In +4 x -___ sin 2nnx, sin nxd 
2aU 2 n d  s i n x ( x , - ~ )  n-l n 1-q2n 

(3.36) 

where C, is given by (3.28), so that 0, and hence r is essentially determined from 
(3.28) and (3.36), starting from a given value of either x, or C,. 
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FIQURE 5. 

I n  the next step, the upper half of the rectangle in figure 5 ( a )  is mapped onto a 
half-plane Im h 2 0 by means of the function 

(3.37) 

where 5n u = sn (u, k) is a Jacobian elliptic function of modulus k, the latter being 
determined by the transcendental equation 

(3.38) 

where K = K(E) is the complete elliptic integral of the first kind of modulus 6 and 
K = K'(k) = K(k?), k? = d(1 -I?) denoting the complementary modulus. The 
mapping (3.37) carries the points 0, f r ,  & 1/2Z,, f 1/2C,+ ib/2a into the points 0, 
f 1, f l/k, f co on the real axis Im h = 0, as shown in figure 5 ( b ) .  Here 

k = sn (2Z, &-, 6). (3.39) 
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The half-plane Imh 2 0 may now be mapped again onto a rectangle by means of 
the Schwarz42ristoffel mapping 

dt 
p = F(A, k) = JoA 

[( 1 - t 2 )  (1  - k2t2)]i' (3.40) 

which is seen to represent an elliptic integral of the first kind of modulus k. In 
particular, K(k)  = F(l, k)  and K'(k) = P(1, k') are complete elliptic integrals of 
modulus k and k', respectively. The choice (3.39) of modulus k ensures that the images 
under (3.40) of the points f 1 and f l / k  on Imh  = 0 forms the corners f K, f K+iK' 
of a rectangle, shown in figure 5(c ) .  In this rectangle the image of the original field 
in the z-plane appears as a uniform field with field lines parallel to Rep = 0. Thus, 
the unknown rectangle of (3.32) has been determined. 

Zv is now obtained for a given value of either x, or Zz by first calculating @,/2aU 
from (3.28) and (3.36) as well as r from (3.35). Next, one determines k and k from 
(3.38) and (3.39), using tables or appropriate series (Abramowitz & Stegun 1970). 
Then K'/K(k) may be computed from (Oberhettinger & Magnus 1949), 

(3.41) 
1707 +- L17+ ..., 2 15 150 
217 

exp{ -%} = ; L + - L ~ + - L @ + - L ~ ~  
25 29 213 

with L = [l- (1 - ke)i]/[l + (1 - k2)t], and finally Zv is obtained from (3.33). 
It will be clear, of course, that the mapping technique used for determining Zv from 

known properties of a field in the x-direction remains applicable to a much larger class 
of inclusion shapes than considered here, subject only to the necessary symmetry in 
the x- and y-axes. Essentially, one requires Z, together with the potential @,/2aU 
in the stagnation point (x,,O) by any method. Consider, for example, the special case 
of a medium containing flat inclusions in the form of barriers of negligible thickness 
and dimensionless width d in the x-direction. There being no obstruction in the 
x-direction, Z, must equal unity while @,/2aU = -+? at the stagnation point x, = !$, 
i.e. along one edge of the central inclusion. In this case, therefore, C, and @,/2aU 
are trivially known and Zv may be computed immediately by the above method, using 
the values C, = 1 and r = a( 1 - d). 

Finally, the asymptotic behaviour of ZJl, 00) or Zv(l,O) for nearly touching 
inclusions is of some interest, being determined largely by the resistance of narrow-gap 
regions between adjoining inclusions. Let h = 1-21~~1 denote the gap width along the 
x-axis between two inclusions. Since Z,(l, 00) = l/Zv(l, 0)+ 00 for h+O, it follows 
from (3.33) that K'/K+ 00 or k+O, as implied by the asymptotic relation 

K ' 2 4  
- = - h-+ ... , 
K x k  k << 1, (3.42) 

which is contained in (3.41). Furthermore, from (3.36), one has approximately 
@,/2aU = -x8/Z,, assuming that h -4 1 -d  < 1. Equations (3.35) and (3.39) therefore 
yield the approximation k = kKh, h << 1, where the modulus k and associated 
complete elliptic integral Kare determined from (3.38) for the threshold value (3.29) 
of Zz. Introducing this approximation into (3.42) and substituting in (3.33), one 
obtains 

1 2a 
ZJl, 00) = - - lnh+ ..., h 4 1, 

Zv(1,O) - -3 (3.43) 

upon neglecting a term which remains finite as h approaches zero. 
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FIGURE 6. Conductivities t, and Ly as tunctions 01 inclusion volume IractionJ lor a square array 
of Rankine bodies; b/a  = 1, d = 0. Shown for comparison are the results of Keller 6 Sachs (1964) 
for circular cylinders. 

The singularity exhibited by this result in the limit h+O is expected for perfectly 
conducting inclusions and is well known since Keller (1963) first gave asymptotic 
results of this type for nearly touching, perfectly conducting spheres as well as circular 
cylinders. Keller’s work was later extended considerably by Batchelor & O’Brien 
(1977), who obtained approximate results for nearly touching as well as for touching 
grains of large but finite conductivity in comparison with that of an embedding matrix 
phase (see also the recent discussion by McPhedran et al. 1983). The logarithmic 
singularity of (3.43) differs from the h-t singularity obtained by Keller for nearly 
touching circular cylinders but, coincidentally, is of the same form as in the case of 
a simple cubic array of nearly touching spheres, although its intensity is smaller by 
a factor 4/x2 and also involves a finite aspect ratio of the cell, the limit a /b  + 0 being 
disregarded here as of no particular significance. 

It is seen that relation (3.43) does not depend upon d under the assumption that 
h + 1 - d .  The asymptotic behaviour of ZJl ,  00)  may, in fact, be viewed as controlled 
by the gap width left between protuberances which grow from two adjoining 
inclusions and became pointed as h+O while there is negligible change in inclusion 
volume fraction, as will become evident from the subsequent discussion. As with 
earlier results of this kind, it is the explicit prediction of the dependence of an effective 
medium property upon a type of constriction or ‘pore throat ’, which makes relation 
(3.43) of some interest. 

3.4. Results for C, and Cg 
It is instructive to consider first the case d = 0, b/a = 1 of figure 3. Here the inclusions 
are very nearly circular in cross-section at volume fractions less than 0.2. Hence, since 
the lattice is a square lattice, one expects approximately equal values of Z, and Zg 
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FIGURE 7. Conductivities Zz and C, as functions of inclusion volume fraction f for various 
aspect ratios bla and d = 0. 
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FIGURE 8. Conductivities Zz and Zy as functions of inclusion volume fraction f for various 
aspect ratios bla and d = 0.75. 
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throughout this range. Figure 6 shows that this is indeed the case. Moreover, there 
is full agreement in this range with existing soiutions for circular inclusions as may 
be seen from a comparison with data reported by Keller & Sachs (1964). The slope 
of all three curves approaches the value - 2  asf+O, indicated by the straight dashed 
line, as may be readily inferred from expression (3.30) by considering values of x, small 
enough to permit the approximations Z, x 1 -2nx,2u/b x 1 -2f. 

Figures 7 and 8 explore the effects of cell shape b/a  and inclusion shape d on 2, 
and Z,. The different behaviour of C, and C, reflects the already familiar inclusion 
shapes and their evolution from horizontal barriers of width d and negligible thickness 
at  Zz+ 1 to blocking barriers a t  the threshold Z, = 0. Thus, as the volume fraction 
approaches zero, Zy approaches a limit C,(f = 0) < 1 whenever d > 0, corresponding 
to the existence of a barrier in the form of a sheet of negligible thickness, connecting 
the source and the sink. 

Cell shapes with smaller aspect ratios b/u permit higher threshold volume fractions 
to be attained and conductivities below 0.1 display an exponential dependence on 
the volume fraction. 

Furthermore, as may be seen from figure 8, apart from large differences in threshold 
conductivities, the effects of cell shape on Cz are much less pronounced for long and 
flat inclusions (d = 0.75), leading to a roughly linear dependence of Z, on f, 
independent of cell shape. In contrast herewith, figure 8 shows strikingly different 
behaviour of 

Dr J. M. Mosquera computed the numerical results from which the figures were 
drawn. His generous assistance is gratefully acknowledged. This work was supported 
by an unrestricted grant from Shell Development Company during the author’s 
affiliation with the Division of Engineering at Brown University. 

depending on cell shape. 
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